Liquid baths have been used for foam testing since the inception of the method. With the need from the automotive industry for foam testing at higher temperatures (150°C) came the desire to eliminate the safety risks and imprecision of hot, messy oil bath systems, sparking the development of the TFAB™ in 1995. The air bath system has been used and recommended for foam test methods ever since.

Foaming Tendency & Stability of Lubricating Oils: High foaming tendency and slow foam collapse time can be serious problems in systems such as high-speed gearing, high-volume pumping, and splash lubrication. Foaming can cause inadequate lubrication, cavitation, and loss of lubricant due to overflow, resulting in mechanical failure. Oil additives help reduce the generation of foam. The Tannas Foam Air Bath (TFAB™) measures the tendency and stability of foam additive effectiveness in oils and lubricants over a broad temperature range (24°C to 150°C) per the industry test methods. The removable Carousel holds up to (6) six 1000-mL test cylinders using the recommended Stainless Steel cylindrical Gas Diffusers.

The single air bath approach of the TFAB™ dramatically reduces bench space requirements, eliminates the need to replace oxidized (discolored) bath oil, permits more accuracy in reading foam levels, and significantly reduces the hazards of operating sequences of higher temperatures. An innovative touchscreen interface promotes ease-of-use, while the new Direct Drive motor allows for quiet and maintenance-free operation. The TFAB™ has shown correlation in ASTM round robin studies and has assisted in ASTM efforts of improving the test method precision.

Features

- **New Direct Drive** motor for quiet and maintenance-free operation.
- The non-liquid system eliminates hazardous bath mediums from laboratory environments.
- Thermal equivalence at all locations within bath - no temperature variations among samples.
- Removable six-position cylinder carousel; convenient side-mounted cylinder drying rack.
- New touchscreen controller and thermocouple placement for accurate control via sample temperature.
- Progressive timer with audible alarms for simplified determination of Collapse Time in D6082 test.
- Built-in cool ‘tap’ water circulation system aids cooling from higher temperature Sequences and maintains 24°C in warmer lab environments. Optional Chiller Bath available for labs without a cold tap water source nearby.

The touchscreen controller offers a user-friendly interface during operation with continuous time readout and sequence alarms for each measuring time.
TANNA S CO. LABORATORY INSTRUMENTS

Parts & Accessories

TFAB™ Instrument:
550100: 220 VAC, 50/60 Hz Power

ASTM D892 & D6082:
550120: Water Displacement Exit Air Measuring Device
550122: Digital Exit Air Measuring Device
550156: Air Flow Calibration Device
550154: Digital Gas Diffuser Verification Device
550080: TFAB™ Chiller Bath
550016: Glass Cylinder - 1000 mL
550157: Stainless Steel Diffuser Stone - Certified
550145: Diffuser Tube Assembly
550029: Centering Washer
550018: Air Tubing - 18" Tygon
550020: Probe s/s 18"
970137: Lamp LED - Foam Bath
550125: Cylinder Stopper Assembly (3 hole)
550060: Spare Fuse Set - 220V, 50/60 Hz
550037: Carousel Rubber Stopper
040004: F-100 Reference Oil (1.89 L)
040005: F-200 Reference Oil (1.89 L)

Digital Exit Air Device

The use of an exit air device is required in D892 to measure the total air volume that has passed through each gas diffuser during the 5-minute blowing period — unless the operator chooses to run according to the Alternative Procedure per Section 11 of the D892 method. The Tannas Digital Exit Air Device is the best alternative for this measurement. Tannas also offers a more basic Inverted Cylinder device at a lower price point. Contact us for details.

Instrument Specifications

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Bench-top: 61(w) x 61(d) x 53(h) cm</th>
<th>(24 x 24 x 21 inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>~72.5 kg (~160 lbs.)</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>220 VAC, Single Phase, 10 Amp.</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz.</td>
<td></td>
</tr>
<tr>
<td>Heating Medium</td>
<td>Air</td>
<td></td>
</tr>
<tr>
<td>Improved Feature</td>
<td>New Direct Drive motor for quiet and maintenance-free operation</td>
<td></td>
</tr>
<tr>
<td>Diffuser Air Flow</td>
<td>Stainless steel, cylindrical, diffuser stone, Pre-heated diffuser air flow system Two (2) built-in Air Flow Meters Air Flow Rate: 94 to 200 mL/min. (±5 mL/min.)</td>
<td></td>
</tr>
<tr>
<td>Operating Parameters</td>
<td>Temperature Range: +20°C to 175°C (±0.1°C) Foaming Sequences: I @ 34°C II @ 93.5°C III @ 24°C IV @ 150°C</td>
<td></td>
</tr>
<tr>
<td>Touch-Display Controller</td>
<td>Digital Display of Operator Commands Audible Sequence Alarms for each measuring time Automated Air Flow Meters programmed for each sequence Continuous time readout</td>
<td></td>
</tr>
<tr>
<td>Sample Volume</td>
<td>200 mL</td>
<td></td>
</tr>
<tr>
<td>Testing Capacity</td>
<td>Holds six (6) 1000 mL Cylinders Tests two (2) oil samples simultaneously</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>Over-temperature Cut-off Fuse & Current Limiting Fuses Triple Pane Glass View Port CE Marked</td>
<td></td>
</tr>
<tr>
<td>Shipping Weight & Dimensions</td>
<td>~90 kg (198 lbs.) Approximately ~71 x 71 x 122 cm (28 x 28 x 48 inches) Approximately</td>
<td></td>
</tr>
</tbody>
</table>

Additional TANNAS CO. Precision Laboratory Instruments

Tannas Noack S2 Volatility Test
• ASTM D5800, Evaporation Loss
• Phosphorus Volatility
• non-Wood’s metal heating system

Tapered Bearing Simulator (TBS™) Viscometer
• ASTM D4683, D6616, CEC L-36-A90, IP370
• High-Temperature, High-Shear (HTHS) Viscosity

Quantum® Oxidation Tester
• ASTM D2272, D2112, D4742, D942, IP229
• RPVOT, TFOUT, Grease Oxidation
• Non-liquid ‘dry cylinder’ sample heating

Lazar Scientific, Inc.
12692 Sandy Drive, Suite 116
Granger, IN 46530
Phone: 574-271-7020 | Email: support@lazarsci.com
www.lazarsci.com